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1 Motivation

In a standard nonlinear regression problem, a mathematical model is proposed which links one
or more states of interest to the independent variables (regressors) of an experiment and to a
vector of parameters whose values are unknown to the experimenter. An experiment is then
conducted on the physical or biological system and data is collected for one or more states of
interest. The unknown parameters of interest are then estimated in an inverse or parameter
estimation problem, the theory for which is well-established [15, 28, 31]. Yet in many situations
physical, biological, or experimental limitations do not permit one to sample individual data
directly. Rather, one obtains data at the aggregate level as multiple individuals are sampled. It
is commonly assumed that the states of interest for these individuals are described by a single
mathematical framework, but that each individual is described by a unique set of parameters
within that framework. For instance, the growth of mosquitofish [9, 16, 17] and shrimp [5, 11, 13]
have been shown to be described by a size-structured partial differential equation model in which
the rate of individual growth is assumed to vary probabilistically across the population. HIV
replication data has been shown to be accurately described by a cellular-level model in which
intracellular delays vary from cell to cell [7]. The probabilistic distribution of parameters has also
been observed in models of electromagnetic polarization [8, 10, 18, 19] and in the deformation of
viscoelastic materials [22]. These examples are considered at greater length in the recent book
[2].

In each of these examples, one has a mathematical model which describes the behavior
of an individual but data which has been sampled from an entire population of individuals.
Thus, in the context of the mathematical model, one has information not on the value of a
fixed, single parameter, but rather on the distribution of parameters which characterizes the
behavior of the entire population. It is this probability distribution which one seeks to estimate.
Significantly, the data is sampled from the state space of the mathematical system and not
from the parameter space; thus one does not sample directly from the distribution of interest. In
developing a framework for this estimation problem, one encounters a rich body of mathematical
theory. In this document, we summarize a computational method for the estimation problem
which has been developed and tested computationally over the past several decades [4, 8, 16, 21]
(Section 5). In Section 4 below, significant new results are given which establish the existence
and consistency of the least squares estimator for this nonparametric estimation problem. First,
we formally define the estimation problem.

Suppose that the quantities of interest for a single individual can be described by the math-
ematical model

dy

dt
= g(t, y(t); q, ψ),

y(t0) = y0. (1.1)

The parameter vector q ∈ Rr is specific to each individual within the population while the
parameter vector ψ ∈ Ru describes parameters common to all individuals within the population
(e.g., environmental factors). The observation model solution is given by

y(t; θ, ψ) = Cf(t; q, y0, ψ) (1.2)
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where θ = (q, y0) ∈ Rr+s = Rp. It is assumed f(t; θ, ψ) ∈ Rs and C ∈ Rl×s so that y ∈ Rl. (In
the notation that follows, we tacitly assume l = 1; this is only for convenience and all theory
presented holds for vector observations.) It is assumed that θ ∈ Θ and ψ ∈ Ψ for all individuals
in the population, where Θ and Ψ are sets of admissible parameters.

For the aggregate data problem, one can consider n observations as random variables resulting
from the direct sampling of the mean population state, but measured subject to random error.
Then it is possible to define the random variables

Vj = v(t;P0, ψ0) + Ej (1.3)

for j = 1, . . . , n where

v(t;P, ψ) = E[Cy(t; ·, ψ)|P ] =

∫

Θ

Cy(t; θ, ψ)dP (θ),

and the random variables Ej represent measurement noise, modeling error, microfluctuations,

etc. Let ~E = (E1, . . . , En). It is assumed that the first two central moments of the random vector
~E are

E[~E ] = ~0

V ar[~E ] = R. (1.4)

It is most commonly assumed that the random variables Ej are independent and identically
distributed, so that R = σ2In, where In is the n × n identity matrix. In the theory presented
in this document, we typically make this assumption of a constant or absolute error model.
However, this is not strictly necessary and the results presented can be generalized to include
a wide array of statistical models which are encountered in practical problems. Extensions to
other error models are considered in Section 6.

Given n realizations vj of the random variables Vj (which we will sometimes write ~v and ~V
for notational convenience), the goal of an inverse or parameter estimation problem is to produce
an estimate of the hypothetical true parameters P0 and ψ0. Of course, the estimated parameters
should be those that best fit the data in some appropriate sense. Thus this problem first involves a
choice of framework in which to work. Given that choice of framework, one must establish a set of
theoretical and computation tools with which to treat the parameter estimation problem. For the
results presented here, we focus on a frequentist approach using general least squares estimation.
Theoretical results for likelihood estimation (also in a frequentist framework) can be established
with little difficulty from the results presented here. For the moment, we do not consider a
Bayesian approach to the estimation of the unknown distribution P0. There does seem to be
some commonality between the nonparametric estimation of a probability distribution and the
determination of a Bayesian posterior estimator [21]. However to our knowledge, a comprehensive
comparison of the two methods (either theoretical or computational) has not been performed.

We remark here that the estimation of the incidental parameter ψ is not of primary interest
in this document. Techniques for the estimation of ψ fall entirely within the theory of classical
nonlinear least squares. The parameter is included in the formulation above to provide clear
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indication that the theory presented below for the nonparametric estimation of a probability
distribution is compatible with the simultaneous estimation of an incidental parameter. For
instance, in Equation (1.5) below, one can define the estimator (Pn, ψn) in (P(Θ),Ψ). Without
loss of generality, it will be assumed that ψ is known.

For the least squares problem, define the estimator

Pn = arg min
P∈P(Θ)

Jn(~V , P ) = arg min
P∈P(Θ)

n∑

j=1

(Vj − v(tj;P ))
2 . (1.5)

We remark that Pn is itself a random variable in that it is a function of the random variables Vj
(and hence Ej). This dependence is generally suppressed with the exception of the subscripted
n, but should be carefully noted, particular in the consideration of the existence and consistency
of the estimator (Section 4). The inverse problem is then to use realizations vj of the random
variables Vj to compute

P̂n = arg min
P∈P(Θ)

Jn(~v, P ) = arg min
P∈P(Θ)

n∑

j=1

(vj − v(tj ;P ))
2 . (1.6)

However, one cannot typically compute P̂n as defined. In most practical problems, the model
v(t;P, ψ) cannot be computed exactly and must be approximated with vN(t;P, ψ) by some
numerical scheme (e.g., finite difference methods, Galerkin methods, etc.). Similarly, the space
P(Θ) has (uncountably) infinitely many elements so that it must also be approximated by some
computationally tractable sets PM (Θ). Thus, given a set of realizations {vj} of the random
variables Vj, what one computes in practice is

P̂N
n,M = arg min

P∈PM(Θ)
JN
n (~v, P ) = arg min

P∈PM(Θ)

n∑

j=1

(
vj − vN(tj ;P )

)2
. (1.7)

The immediate question of interest is how these formal definitions relate back to the actual
quantity of interest, the unknown ‘true’ probability measure P0. In considering this question, we
see that several additional questions must be answered. First, it must be shown that the least
squares estimator Pn given by (1.5) is well-defined. The next question is computational: as M
and N grow large, is it necessarily true that P̂N

n,M converges (in some sense) to P̂n? Of course,
the answer to this question depends largely upon the approximation schemes used. For instance,
one could define PM(Θ) to be the subset of the space of probability measures consisting of those
measures with a specific parametric form. While this technique has the advantage of creating a
standard nonlinear estimation problem, it may lead to inaccurate and misleading results unless
there is strong evidence to suggest a particular parametric form for the unknown measure. In
this document, we are concerned with nonparametric estimation, so that only a minimal set of
restrictions is placed on the class of admissible measures.

The remaining question is statistical. Assuming that P̂N
n,M approaches P̂n as M and N grow

large, how does this estimate compare with P0? Put another way, given any fixed n observations,
one obtains an estimate P̂n of Pn. How does this estimate improve as more data is collected (that
is, as n grows large). This is a question of the consistency of the least squares estimator Pn.
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As will be shown there is a natural setting, which we will call the Prohorov Metric Framework
(PMF), in which these questions can be answered for parameter estimation problems such as
these, in which the unknown parameter is a probability distribution. We begin by describing
the Prohorov metric on the space of probability measures and derive some properties which will
be useful in answering the questions posed above. Under a fairly general set of conditions, in is
shown that the estimator Pn is well-defined (in the sense that it is a measurable function which
maps the space of data to the space of probability measures). Next, this estimator is shown to be
consistent, and conditions for computational approximation and convergence are given. Finally,
the statistical model (1.3) is revisited and the results of this document are extended to a larger
class of problems.

2 The Prohorov Metric

We begin with several general definitions and theorems which are meant to motivate the PMF and
provide some background. No proofs are given for this motivating material, although references
are provided. Details proofs are provided for the more interesting features of the PMF. A number
of the results presented can be founded scattered through existing literature. Many of the results
of the next two sections (and some alternative proofs) can be founded in [25, 33] and have been
usefully organized into an easy-to-read series of notes [27].

First, the Riesz Representation Theorem on the space of bounded continuous functions is
stated. This theorem can be used to characterize the weak ∗ topology on the continuous dual of
the space of bounded continuous functions, which provides an intuitive motivation for the weak
topology on the space of probability measures. It is no surprise then that the two topologies
are equivalent on the space of probability measures. Next the Prohorov metric is defined and is
shown to metrize the weak topology of measures. The Prohorov metric is then used to establish
several desirable properties of the space of probability measures.

Consider the metric space Θ with its metric d, which we can write together as (Θ, d). Define
the space CB(Θ) = {f : Θ → R|f bounded, continuous}.

Theorem 2.1 (Riesz). Assume (Θ, d) is a compact (Hausdorff1) space. For every f ∗ ∈ CB(Θ)∗

(the continuous dual of the space CB(Θ)), there exists a unique finite signed Borel measure µ
such that

f ∗(f) =

∫

Θ

f(θ)dµ(θ)

for all f ∈ CB(Θ). Moreover, ||f || = |µ|(Θ).

Proof. See [30, pg. 357-358].

Given this identification, we may write f ∗ = f ∗
µ when convenient. We see that the set P(Θ)

of probability measures on (Θ, d) can be identified with those f ∗
µ ⊂ CB(Θ)∗ such that f ∗

µ(f) ≥ 0

for all f ∈ CB(Θ) and
∣∣∣∣f ∗

µ

∣∣∣∣ = µ(Θ) = 1. Thus we have, in a sense, that P(Θ) ⊂ CB(Θ)∗. In
fact, given any f ∈ CB(Θ), the map from CB(θ) into R given by f ∗∗

f (f ∗) = f ∗(f) defines the

1The assumption that Θ is Hausdorff will be maintained throughout this document.
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natural embedding of CB(Θ) →֒ CB(Θ)∗∗. The image of f ∗∗ induces a topology on the space

CB(Θ)∗, known to functional analysts as the weak ∗ topology [2, 49–57]. (That is, f ∗
n

w∗

−→ f ∗ if
and only if f ∗

n(f) → f ∗(f) for all f ∈ CB(Θ).) When viewed in the context of P(Θ) ⊂ CB(Θ)∗,
this is the weak convergence of measures known from the theory of probability and stochastic
processes.

With this motivation, we now turn to the problem of characterizing the weak topology of
measures.

Definition 2.2. Let (Θ, d) be any metric space (not necessarily compact) and define the set
CB(Θ) as above. Given any probability measure P ∈ P(Θ) and some ǫ > 0, an ǫ-neighborhood
of P is

Bǫ(P ) =

{
Q
∣∣∣
∣∣∣∣
∫

Θ

f(θ)dQ(θ)−

∫

Θ

f(θ)dP (θ)

∣∣∣∣ < ǫ, for all f ∈ CB(Θ)

}
. (2.1)

Comparing the Riesz Represention Theorem (Theorem 2.1) with the definition of Bǫ(P ),
there is a clear connection between the open balls on P(Θ) and the weak topology of measures.
In fact, we may take the collection of all open balls as the definition of the weak topology of
measures [25, pg. 236]. Alternatively, we have the following equivalent characterizations of the
weak topology.

Theorem 2.3. Let Θ be a topological space with σ-algebra ΣΘ. Let P ∈ P(Θ). The following
are equivalent:

1. Bǫ(P );

2. {Q|Q(C) < Q(C) + ǫ, C ⊂ Θ closed};

3. {Q|Q(O) < Q(O) + ǫ, O ⊂ Θ open};

4. {Q|Q(F ) < Q(F ) + ǫ, F ∈ ΣΘ, P (∂F ) = 0 (such sets are called P-continuity sets)}.

Proof. See [25, pgs. 236-237].

The weak topology of measures, in turn, gives rise to notions of weak (topological) convergence
of measures.

Definition 2.4. Given a sequence of measures PM ∈ P(Θ) for all M = 1, . . . ,∞, we say PM

converges weakly to P , PM
w∗

−→ P , if any one (and hence all) of the following equivalent conditions
holds:

1.
∣∣∫

Θ
f(θ)dPM(θ)−

∫
Θ
f(θ)dP (θ)

∣∣→ 0 for all f ∈ CB(Θ);

2. lim supPM(C) ≤ P (C) for all C closed in Θ;

3. lim inf PM(O) ≥ P (O) for all O open in Θ;

4. limPM(F ) = P (F ) for all sets F ∈ ΣΘ such that F is a P-continuity set.
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The equivalence of the above notions of convergence is often referred to as the portmanteau

theorem [25, pgs. 11-12]. We remark that the notation PM
w∗

−→ P is slightly abusive as it implies
weak ∗ convergence when what is meant is the weak convergence of measures. Yet it should be
emphasized that the two notions are equivalent on the space of probability measures.

The above definitions and theorem provide several characterizations of the weak ∗ topology
on the set of probability measures. While this characterization is mathematically sufficient, our
discussions of approximation and convergence would be facilitated by some metric ρ defined on
the space P(Θ) which metrizes the above notions of topological convergence. That is, given two
probability measures P and Q, we would like ρ to have the property that Q ∈ Bǫ(P ) if and
only if ρ(P,Q) < ǫ. Such a metric could then be used to establish more intuitive notions of
convergence, compactness, etc., in the space of probability measures. In fact, such a metric does
exist, named for the Russian probabilist Y.V. Prohorov who first defined the metric [29] and
derived its properties.

Definition 2.5. Let (Θ, d) be a metric space. For all F ∈ ΣΘ, F 6= ∅, define the ǫ-neighborhood
of F ,

F ǫ = {φ ∈ Θ| inf
θ∈Θ

d(θ, φ) < ǫ}.

If F = ∅, define F ǫ = ∅.

Definition 2.6. Let (Θ, d) be a metric space and let P(Θ) be the set of all probability measures
on Θ. For any two measures P,Q ∈ P(Θ), the Prohorov metric ρ is

ρ(P,Q) = inf {ǫ > 0|Q(F ) ≤ P (F ǫ) + ǫ and P (F ) ≤ Q(F ǫ) + ǫ, for all F ∈ ΣΘ} .

This definition of the Prohorov metric is far from intuitive. We will first prove that Definition
2.6 does indeed describe a valid metric. Next, we show that ρ metrizes the weak ∗ topology.

Theorem 2.7. Let (Θ, d) be a separable metric space. Then ρ is a metric on P(Θ).

Proof. By construction, ρ is nonnegative and symmetric and ρ(P,Q) = 0 if P = Q. We must
show ρ(P,Q) = 0 implies P = Q, and that ρ is subadditive.

Assume ρ(P,Q) = 0. Then P (F ) = Q(F ) for all F ∈ ΣΘ (and, in particular, for all closed
sets in Θ). Since (Θ, d) is separable, all probability measures on Θ are regular [25, pg. 7], and
thus are uniquely determined by their values on closed sets. Thus we may conclude P = Q.

To show subadditivity, assume ρ(P1, P2) = ǫ1 and ρ(P2, P3) = ǫ2. We need to show ρ(P1, P3) ≤
ǫ1 + ǫ2. From the definition of ρ, the following inequalities hold for all F ∈ ΣΘ:

P1(F ) ≤ P2(F
ǫ1) + ǫ1

P2(F ) ≤ P1(F
ǫ1) + ǫ1

P2(F ) ≤ P3(F
ǫ2) + ǫ2

P3(F ) ≤ P2(F
ǫ2) + ǫ2.

Thus we have

P1(F ) ≤ P2(F
ǫ1) + ǫ1 ≤ P3 ((F

ǫ1)ǫ2) + ǫ1 + ǫ2

P3(F ) ≤ P2(F
ǫ2) + ǫ2 ≤ P1 ((F

ǫ2)ǫ1) + ǫ2 + ǫ1
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Trivally, (F ǫ1)ǫ2 ⊂ F ǫ1+ǫ2. Hence P1(F ) ≤ P3(F
ǫ1+ǫ2) + ǫ1 + ǫ2 and P3(F ) ≤ P1(F

ǫ1+ǫ2) + ǫ1 + ǫ2.
Since these statements hold for all F ∈ ΣΘ, ρ(P1, P3) ≤ ǫ1 + ǫ2.

Theorem 2.8. Assume (Θ, d) is separable. Assume PM ∈ P(Θ) for all M = 1, . . . ,∞, and

P ∈ P(Θ). Then PM
w∗

−→ P if and only if ρ(PM , P ) → 0.

Proof. (⇐) Assume ρ(PM , P ) → 0. Then for all ǫ > 0 there exists M̃ = M̃(ǫ) such that

PM(F ) < P (F ǫ) + ǫ and P (F ) < PM(F ǫ) + ǫ

for all F ∈ ΣΘ. Let C by any closed set in Θ. (Then C ∈ ΣΘ.) Since (Θ, d) is separable, P is
regular and there exists δ < ǫ such that

P (Cδ) < P (C) +
ǫ

2
.

Take M̃ = M̃(δ/2), Then ρ(PM , P ) <
δ
2
for all M > M̃ and

PM(C) < P (Cδ/2) +
δ

2
(defn of ρ)

< P (C) +
ǫ

2
+
δ

2
(regularity of P )

< P (C) + ǫ (choice of δ).

Hence lim supPM(C) ≤ P (C) for all C closed in Θ and PM
w∗

−→ P by Definition 2.4.

(⇒) Assume PM
w∗

−→ P . For all ǫ > 0, fix δ such that 0 < δ < ǫ
3
. By the separability of Θ,

there exist open sets Bδ(θk) such that

∞⋃

k=1

Bδ(θk) = Θ.

Fix n0 such that

P

(
n0⋃

k=1

Bδ(θk)

)
≥ 1− δ. (2.2)

(Such a a value n0 must exist since limn→∞ P (
⋃n

k=1Bδ(θk)) = 1.) Define the collection of all
possible (nonempty) unions of the sets Bδ(θk), 1 ≤ k ≤ n0,

O =

{
⋃

K

Bδ(θk)
∣∣∣K ⊂ {1, 2, . . . , n0}

}
.

Then for all A ∈ O, A ∈ ΣΘ and ∂A ⊂
⋃n0

k=1 ∂Bδ(θk) so that P (∂A) = 0. Then A is a
P-continuity set and PM(A) → P (A) by assumption. Thus there exists M̃ such that

|PM(A)− P (A)| < δ (2.3)
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for all M > M̃ and for all A ∈ O. In particular, for A =
⋃n0

k=1Bδ(θk),

PM

(
n0⋃

k=1

Bδ(θk)

)
≥ P

(
n0⋃

k=1

Bδ(θk)

)
− δ

≥ 1− 2δ (by (2.3)). (2.4)

Now, we need to show PM(F ) < P (F ǫ) + ǫ and P (F ) < PM(F ǫ) + ǫ for all F ∈ ΣΘ. Let F ∈ ΣΘ

be arbitrary. Define

A =
⋃{

Bδ(θk)
∣∣∣Bδ(θk)

⋂
F 6= ∅

}

where the union is taken over 1 ≤ k ≤ n0. The following facts are trivially verified:

A ∈ O (2.5)

A ⊂ F δ (2.6)

F ⊂ A
⋃
(

n0⋃

k=1

Bδ(θk)

)C

. (2.7)

Then for all M ≥ M̃ ,

P (F ) ≤ P (A) + P



(

n0⋃

k=1

Bδ(θk)

)C

 (by (2.7))

≤ P (A) + δ (by (2.2))

≤ PM(A) + 2δ (by (2.3))

≤ PM(F δ) + 2δ (by (2.5))

≤ PM(F ǫ) + ǫ (by choice of δ).

and

PM(F ) ≤ PM(A) + PM



(

n0⋃

k=1

Bδ(θk)

)C

 (by (2.7))

≤ PM(A) + 2δ (by (2.4))

≤ P (A) + 3δ (by (2.3))

≤ P (F δ) + 3δ (by (2.5))

≤ P (F ǫ) + ǫ (by choice of δ).

Hence ρ(PM , P ) ≤ ǫ for all M ≥ M̃ .

With these considerations, we have obtained the desired result–the weak topology of measures
(weak ∗ topology) is equivalent to the topology induced by the Prohorov metric on the space of
probability measures over a separable metric space (Θ, d). It should be noted that in the definition
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of the Prohorov metric, it is sufficient to consider only sets F which are closed (see [33, Online
Supplement] for a proof; this follows from the fact that probability measures are regular [25,
pg. 7]), so that the definitions and results presented here are in agreement with similar results
obtained previously [4, 6, 11, 16, 21]. We now proceed to use the Prohorov metric to establish
a list of propositions, theorems and corollaries which will be of use as we return to the original
problem of setting up a least-squares estimation framework for the nonparametric estimation of
measures.

3 Some Useful Results

From the results of the previous section, we know that given a separable metric space (Θ, d), the
space (P(Θ), ρ) of probability measures on Θ is a metric space with a topology equivalent to the
weak topology of measures (weak ∗ topology). We now focus on characterising the properties of
the space (P(Θ), ρ) which will prove useful in establishing results for the parameter estimation
problem.

Define
D = {∆θk |θk ∈ Θ}.

That is, D is the space of Dirac measures on Θ, defined for all F ∈ ΣΘ as

∆θk(F ) =

{
1, θk ∈ F
0, θk 6∈ F

Proposition 3.1. Let (Θ, d) be a separable metric space and define D ⊂ P(Θ) as above. Then

ρ(∆θ1 ,∆θ2) = min{d(θ1, θ2), 1}.

Proof. Note first that ρ(P,Q) ≤ 1 for all P,Q ∈ P(Θ). Take ǫ > d(θ1, θ2). Then for all F ∈ ΣΘ,
θ1 ∈ F ⇒ θ2 ∈ F ǫ and θ2 ∈ F ⇒ θ1 ∈ F ǫ. Thus for all F ∈ ΣΘ,

∆θ1(F ) ≤ ∆θ2(F
ǫ) + ǫ

∆θ2(F ) ≤ ∆θ1(F
ǫ) + ǫ.

Thus ρ(∆θ1 ,∆θ2) ≤ ǫ. Since this holds for all ǫ > d(θ1, θ2), we have ρ(∆θ1 ,∆θ2) ≤ d(θ1, θ2).
Now take ǫ such that ρ(∆θ1 ,∆θ2) < ǫ < 1. Then

∆θ1(F ) < ∆θ2(F
ǫ) + ǫ

∆θ2(F ) < ∆θ1(F
ǫ) + ǫ

for all F ∈ ΣΘ. Take F = {θ1}. Then the first inequality above implies 1 < ∆θ2 (Bǫ(θ1)) + ǫ.
Since ǫ < 1, we must have ∆Θ1

(Bǫ(θ1)) > 0 and thus θ2 ∈ Bǫ(θ1). Hence d(θ1, θ2) < ǫ. Since
this holds for all ρ(∆θ1 ,∆θ2) < ǫ < 1, we must have min{d(θ1, θ2), 1} ≤ ρ(∆θ1 ,∆θ2). Hence the
stated result holds.

Corollary 3.2. The sequence {θk}
∞
k=1 is Cauchy in the separable space (Θ, d) if and only if the

sequence {∆θk}
∞
k=1 is Cauchy in (P(Θ, ρ).

10



Proof. Trivial, by previous proposition.

Corollary 3.3. Let (Θ, d) be a separable metric space and let the space D be defined as above.
Then D is sequentially closed in (P(Θ), ρ). (That is, D is weak ∗ sequentially closed in the space
of probability measures.)

Proof. Assume the sequence {∆θk}
∞
k=1 converges in the Prohorov metric to some P ∈ P(Θ). We

need to show P ∈ D. An obvious candidate is P = ∆θ where θ = lim θk, if such a limit were to
exist. We show that this is the case.

Consider the sequence {θk}
∞
k=1 and assume (for the purpose of reaching a contradiction)

that this sequence does not have a convergent subsequence. (Then any element in the sequence
{θk}

∞
k=1 can be repeated at most only a finite number of times, and we may assume without

loss of generality that no element of the sequence is repeated.) Define the set S = {θ1, θ2, . . .}.
Then S is (vacuously) closed in Θ, as is every subset of S. Now consider any subsequence
C = {θk1 , θk2, . . .} ⊂ S. Then by the weak convergence of the set {∆θk}

∞
k=1, and because C

cannot contain a convergent subsequence

P (C) ≥ lim sup∆θk(C) = 1.

However, define Ck to be the subset obtained by removing the element θk from S. (If θk were
repeated nk times, one obtains the same result by removing all instances of θk.) Then P (Ck) = 1
for all k (by the argument above), and hence P ({θk}) = 0 for all k. But S is the disjoint countable
union of the point sets {θk}, hence we would have P (S) = 0. But P (S) = 1 since S is itself a
closed set. Thus we have reached a contradiction.

So the sequence {θk}
∞
k=1 must have a convergent subsequence, θkl → θ. But then we must

have ∆θk → ∆θ by Corollary 3.2. Hence P = ∆θ by the uniqueness of weak ∗ limits.

Definition 3.4. P ∈ P(Θ) is tight if for all ǫ > 0 there exists a compact set K ⊂ Θ such that
P (K) > 1− ǫ. A family of measures Π ⊂ P(Θ) is tight if for all P ∈ Π, P is tight.

Theorem 3.5. Assume (Θ, d) is complete. If for all ǫ, δ > 0 there exist θ1, . . . , θM ∈ Θ such that

P

(
M⋃

k=1

Bδ(θk)

)
≥ 1− ǫ,

for all P ∈ Π, then Π is tight.

Proof. For all ǫ > 0, for each n ≥ 1, take δ = 1/n. By hypothesis, there exist θn1 , . . . , θ
n
Mn

∈ Θ
such that

P

(
Mn⋃

k=1

B1/n(θ
n
k )

)
≥ 1− 2−nǫ

for all P ∈ Π. Define

K =

∞⋂

n=1

Mn⋃

k=1

B̄1/n(θ
n
k ).

11



Then K is closed and for ñ > 1/δ,

K ⊂
Mñ⋃

k=1

B̄1/ñ(θ
ñ
k ) ⊂

Mñ⋃

k=1

Bδ(θ
ñ
k ).

Thus K is a totally bounded subset of a complete space. Thus K is compact. Moreover, for any
P ∈ Π,

P (K) = lim
N→∞

P

(
N⋂

n=1

Mn⋃

k=1

B̄1/n(θ
n
k )

)

= 1− lim
N→∞

P




N⋃

n=1

[
Mn⋃

k=1

B̄1/n(θ
n
k )

]C


≥ 1− lim
N→∞

N∑

n=1

P



[

Mn⋃

k=1

B̄1/n(θ
n
k )

]C


1−
∞∑

n=1

2−nǫ

= 1− ǫ.

Theorem 3.6 (Prohorov). Assume (Θ, d) is separable and let Π ⊂ (P(Θ), ρ). The following are
equivalent:

• Π is relatively (sequentially) compact;

• Π is tight.

Proof. See [25, Ch. 1.6]

Corollary 3.7. Assume (Θ, d) is separable. Then (Θ, d) is complete if and only if (P(Θ), ρ) is
complete.

Proof. (⇒) Assume {PM}∞M=1 is a weak ∗ Cauchy sequence in (P(θ), ρ). We need to show there

exists some P ∈ P(Θ) such that PM
w∗

−→ P . To do so, it is sufficient to show that {PM}∞M=1 has
at least one convergent subsequence. If we can show that the collection of measures is tight, then
it is weak ∗ relatively sequentially compact in P(Θ) by Prohorov’s Theorem (Theorem 3.6). To
prove the tightness of this collection of measures, we will use Theorem 3.5.

Let {θ1, θ2, . . .} be an enumeration of the countable, dense subset of Θ. For all ǫ, δ > 0, fix
η < min{ǫ, δ}/2. Since the sequence {PM}∞M=1 is a weak ∗ Cauchy, there exists M̃ = M̃(η) such
that PM(F ) ≤ PN (F

η) + η and PN(F ) ≤ PM(F η) + η for all M,N > M̃ and for all F ∈ ΣΘ.
Note that, by construction,

∞⋃

k=1

Bδ/2(θk) = Θ.

12



Hence for each 1 ≤M ≤ M̃ ,

lim
n→∞

PM

(
n⋃

k=1

Bδ/2(θk)

)
= 1

and there exists an n0 such that

PM

(
n0⋃

k=1

Bδ/2(θk)

)
≥ 1− η. (3.1)

(Such an n0 must exist separately for each value of M , of which there are a finite number.) Now
note that (

n0⋃

k=1

Bδ/2(θk)

)η

⊂
n0⋃

k=1

Bδ/2+η(θk) ⊂
n0⋃

k=1

Bδ(θk). (3.2)

Hence for all M ≥ M̃ ,

PM̃

(
n0⋃

k=1

Bδ/2(θk)

)
≤ PM

((
n0⋃

k=1

Bδ/2(θk)

)η)
+ η (by defn of M̃)

≤ PM

(
n0⋃

k=1

Bδ(θk)

)
+ η (by (3.2))

and therefore

PM

(
n0⋃

k=1

Bδ(θk)

)
≥ PM̃

(
n0⋃

k=1

Bδ/2(θk)

)
− η

≥ 1− 2η (by (3.1))

≥ 1− ǫ (by choice of η).

Finally, for 1 ≤M ≤ M̃

PM

(
n0⋃

k=1

Bδ(θk)

)
≥ PM

(
n0⋃

k=1

Bδ/2(θk)

)

≥ 1− η (by (3.1))

≥ 1− ǫ (by choice of η).

So PM is tight for all M = 1, . . . ,∞. Hence {PM}∞M=1 is tight and thus relatively compact in
P(Θ) and so has a convergent subsequence to some P ∈ P(Θ).

(⇐) Assume {θk}
∞
k=1 is Cauchy in (Θ, d). We need to show θk → θ for some θ ∈ Θ. Since

{θk}
∞
k=1 is Cauchy, the sequence of Dirac measures {∆θk}

∞
k=1 is also Cauchy by Corollary 3.2.

By the completeness of (P(Θ), ρ), there exists P ∈ P(Θ) such that ∆θk
w∗

−→ P . But D (the
space of all Dirac measures) is closed by Corollary 3.3. Hence P = ∆θ, for some θ ∈ Θ. Hence
θk → θ.

13



Corollary 3.8. Assume (Θ, d) is separable. Then (Θ, d) is compact if and only if (P(Θ), ρ) is
compact.

Proof. (⇒) If (Θ, d) is compact then every collection of measures on Θ (and specifically P(Θ)
itself) is tight and thus relatively compact by Theorem 3.6. Since (Θ,d) is compact, it is also
complete and so is (P(Θ), ρ) (by the previous corollary) so that (P(Θ, ρ) must be closed. Hence
relative compactness is compactness.

(⇐) See the proof of the converse half of the previous corollary; given an arbitrary sequence
{θk}

∞
k=1, it must have a convergent subsequence.

It is interesting to note that we may revisit the Riesz Representation Theorem (Theorem 2.1)
for an alternative proof of the direct half of the previous corollary. Given the compactness of

(Θ, d), by the Riesz Representation Theorem we have PM
w∗

−→ P if and only if f ∗
PM

(f) → f ∗
P (f)

for all f ∈ CB(Θ). Now, consider the ball

B =
{
f ∗ ∈ CB(Θ)∗

∣∣∣ ||f ∗|| ≤ 1
}
.

This is the unit ball in CB(Θ)∗, which is compact in the weak ∗ topology by Alaoglu’s Theorem
[30, pg. 237]. We may then observe that

{
f ∗ ∈ B

∣∣∣ ||f ∗|| = 1, and f ∗ positive
}

is homeomorphic to (P(Θ, ρ). This set is also closed in B, and hence compact.
The compactness of the space (P(Θ), ρ) given the compactness of (Θ, d) is of vital importance

for the theoretical framework to be discussed in the next sections. In effect, one need only show
that the cost functional Jn(~v, P ) in (1.6) is a continuous function of P in order to be guaranteed
the existence of a minimizer to the least squares estimation problem.

We need one final result which will be useful in establishing computational tools for the
parameter estimation problem.

Theorem 3.9. Assume (Θ, d) is a separable, compact metric space. Let Θd = {θk}
∞
k=1 be an

enumeration of the countable dense subset of Θ. Take Q ⊂ R to be the set of all rational numbers.
Define

P̃d(Θ) =

{
P ∈ P(Θ)

∣∣∣P =

M∑

k=1

pk∆θk , θk ∈ Θd,M ∈ N, pk ∈ [0, 1] ∩Q,

M∑

k=1

pk = 1

}
.

(That is, P̃d(Θ) is the collection of all convex combinations of Dirac measures on Θ with atoms
θk ∈ Θd and rational weights.) Then P̃d(Θ) is dense in P(Θ), and thus P(Θ) is separable.

Proof. P̃d(Θ) is obviously countable. Let ǫ > 0 and let P ∈ P(Θ) be arbitrary. We need to show
there exists PM ∈ P̃d(Θ) such that ρ(PM , P ) < ǫ. As before, we first note that for each M ≥ 1,

∞⋃

k=1

B1/M (θk) = Θ
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so that we may choose n0 = n0(M) satisfying

P

(
n0⋃

k=1

B1/M (θk)

)
≥ 1− 1/M.

Define

AM
1 = B1/M (θ1)

AM
k = B1/M (θk)−

k−1⋃

j=1

B1/M(θj), k = 2, . . . n0.

Then the sets AM
k , 1 ≤ k ≤ n0 are disjoint and

n⋃

k=1

AM
k =

n⋃

k=1

B1/M (θk), 1 ≤ n ≤ n0

P

(
n0⋃

k=1

AM
k

)
≥ 1−

1

M
.

Pick the values pnk ∈ [0, 1] ∩Q such that

n0∑

k=1

pMk = 1

n0∑

k=1

∣∣P (AM
k )− pMk

∣∣ < 2

M
.

(To do so, one may first freely choose values p̂Mk ∈ [0, 1] ∩Q such that

n0∑

k=1

∣∣P (AM
k )− p̂Mk

∣∣ < 1

2M

and then set pMk = p̂Mk /
∑n0

k=1 p̂
M
k .) Now define

PM =
n0∑

k=1

pMk ∆θk .
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We must show that ρ(PM , P ) → 0 as M gets large. For any f ∈ CB(Θ),

∣∣∣∣
∫

Θ

f(θ)dPM(θ)−

∫

Θ

f(θ)dP (θ)

∣∣∣∣ =
∣∣∣∣∣

n0∑

k=1

pMk f(θk)−

∫

Θ

f(θ)dP (θ)

∣∣∣∣∣

≤

∣∣∣∣∣

n0∑

k=1

P (AM
k )f(θk)−

∫

Θ

f(θ)dP (θ)

∣∣∣∣∣+
2

M
sup
k

|f(θk)|

≤

∣∣∣∣∣

∫

Θ

n0∑

k=1

f(θk)χ(θ)AM

k

dP (θ)−

∫

Θ

f(θ)dP (θ)

∣∣∣∣∣+
2

M
||f ||

∞

≤

∣∣∣∣∣

n0∑

k=1

∫

Θ

(
f(θk)χ(θ)AM

k

− f(θ)χ(θ)AM

k

)
dP (θ)

−

∫

Θ

f(θ)χ(∪
n0

k=1
AM

k
)CdP (θ)

∣∣∣∣+
2

M
||f ||

∞

≤
n0∑

k=1

sup
θ∈AM

k

|f(θk)− f(θ)|P (AM
k )

+ ||f ||
∞
P



(

n0⋃

k=1

AM
k

)C

+

2

M
||f ||

∞
.

(The function χ(θ)A is the indicator function on the set A.) Recall AM
k ⊂ B1/M (θk) by construc-

tion. Thus θ ∈ AM
k implies d(θk, θ) < 1/M and for M large enough, |f(θk) − f(θ)| < ǫ for all

θ ∈ AM
k and for all k (since f ∈ CB(Θ) for Θ compact and thus f is uniformly continuous).

Altogether we have

∣∣∣∣
∫

Θ

f(θ)dPM(θ)−

∫

Θ

f(θ)dP (θ)

∣∣∣∣ ≤ ǫ+
||f ||

∞

M
+

2 ||f ||
∞

M

and the result is proved.

An alternative proof of the above result can be found in [4].

4 Existence and Consistency of the Estimator

We now turn our attention to characterizing the least squares estimator (1.5) and its corre-
sponding estimate (1.6). In the present section we ignore any computational approximations
and establish results concerning the theoretical existence and consistency of the least squares
estimator and estimate, regardless of our ability to compute them (although the method of proof
does foreshadow the computational approach in the next section).
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4.1 Existence of the Estimator

We begin by proving the existence of Pn and P̂n as measurable functions mapping a subset of Rn

(that is, the data) into the space of probability measures on Θ. We remark that the statement
of Theorem 4.1 concerns the estimate P̂n obtained from the data realizations ~v ∈ Rn. This is
sufficient to establish the existence of the estimator Pn as a measurable function as well, since
the random vector ~V is by definition a measurable function from a probability triple into Rn,
and the composition of measurable functions is measurable.

Theorem 4.1. Define the function Jn : Rn × P(Θ) → R according to Equation (1.6). Assume
(Θ, d) is separable and compact and take the space of probability measures P(Θ) with the Prohorov
metric ρ. Assume further that Jn(·, P ) is a measurable function from Rn → R for each P ∈ P(Θ),
and that Jn(~v, ·) : P(Θ) → R is continuous for each ~v ∈ Rn. Then there exists a measurable
function P̂n : Rn → P(Θ) such that

J(~v, P̂n(~v)) = inf
P∈P(Θ)

J(~v, P ).

Proof. Let Θd = {θk}
∞
k=1 be an enumeration of the countable dense subset of Θ as used in

Theorem 3.9. For each M ≥ 1, define

PM(Θ) =

{
P ∈ P̃d(Θ)

∣∣∣P =

M∑

k=1

pk∆θk , θk ∈ {θi}
M
i=1

}
⊂ P̃d(Θ). (4.1)

(That is, PM is the set of all discrete measures consisting of a convex combination of M Dirac
measures with atoms in {θi}

M
i=1 weighted with rational coefficients.) Thus PM is countable. Let

{PM
j }∞j=1 be an enumeration of the elements of PM . (We remark that, because the M nodes

θk are fixed in advance, the space PM can be analogously considered as a subset of RM , a fact
which will be exploited in some of the notation below.) Finally, define PM

J = {PM
j }Jj=1, the first

J enumerated elements of PM .
Fix J ≥ 1. Define the function P̃M

J (~v) implicitly as

J(~v, P̃M
J (~v)) = min

P∈PM

J

J(~v, P ).

Such a function must exist because the minimum is begin taken over a finite number of elements
from a point set; if the minimum occurs at multiple elements of PM

J , we may arbitrarily choose
the element which comes first in the enumeration so that the function P̃M

J (~v) is well-defined.
First, we show that P̃M

J (~v) is measurable.
Let F ∈ ΣPM

J

. (Thus F is a finite point set.) We must show that the set B defined as

B =
{
~v
∣∣∣P̃M

J (~v) ∈ F
}

is contained within measurable sets ΣRn in Rn. Since F is a finite point set, we can define for
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each PM
j ∈ F the sets

Bj =
{
~v
∣∣∣P̃M

J (~v) = PM
j

}

=

{
~v
∣∣∣J(~v, PM

j (~v)) = min
P∈PM

J

J(~v, P )

}

=

{
~v
∣∣∣J(~v, PM

j (~v)) = min
1≤j≤J

J(~v, PM
j )

}
.

By assumption, the functions J(~v, PM
j ) are measurable from Rn into R for all PM

j , j ≥ 1. The
minimum over a finite set of functions is also measurable, as is the test for equality. Hence
Bj ∈ ΣRn . Finally, B = ∪Bj , the union being over the finite number of sets Bj , hence B ∈ ΣRn

and the function P̃M
J (~v) is measurable.

As mentioned previously, we can identify the function P̃M
J (~v) with [0, 1]M ∩QM via the map

P̃M
J (~v) 7→ (pM1 (~v), . . . , pMM(~v)). Let p̃MJ be the first component of the vector representation for
P̃M
J (~v). Now consider the sequence {p̃MJ }∞J=1. Define

p̂M1 (~v) = lim inf
J→∞

p̃MJ (~v).

Since each p̃MJ (~v) is a measurable function, so is p̂M1 (~v). Also, since the space [0, 1]M is compact,
there must exist a convergent subsequence P̃M

Jl
of (the vector representation of) P̃M

J to some
vector (p̂M1 (~v), p̄M2 (~v), . . . , p̄MM(~v)), which can be identified with a measure P̄M . Now

inf
[0,1]M−1∩QM−1

Jn(~v, (p̂
M
1 , p2, . . . , pM)) ≤ Jn(~v, P̄M)

= lim
l
Jn(~v, P̃

M
Jl
)

= lim
l

inf
P∈PM

Jl

Jn(~v, P )

= inf
P∈PM

Jn(~v, P ).

The first equality comes from the definition of P̃M and the continuity of the function J ; the
second equality comes from the definition of P̄M as the limit of the probability measures P̃M

Jl
;

the final equality arises from the density of {PM
j } in P.

Now, define (with some abuse of notation)

J (1,M)
n (~v, P ) = Jn(~v, (p̂

M
1 , p2, . . . , pM)).

Applying the same arguments above inductively on J
(j,M)
n , we obtain a set of measurable functions

p̂M1 (~v), . . . , p̂MM(~v) such that

Jn(~v, (~p
M
1 , . . . , p̂

M
M)) = inf

P∈PM

Jn(~v, P )

and we have proven the existence of a measurable function P̂M ∈ PM mapping Rn → P(Θ)
which minimizes the cost functional Jn. We conclude the proof by noting that

Jn(~v, P̂ (~v)) = inf
P∈P(Θ)

Jn(~v, P ) = lim
M→∞

inf
P∈PM (Θ)

Jn(~v, P ) = lim
M→∞

Jn(~v, P̂M).
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As the final term in the equation above is the composition of measurable functions, it is measur-
able, and thus J(~v, P̂ (~v)) must be measurable, so that P̂ (~v) must be measurable as well.

4.2 Consistency of the Estimator

Theorem 4.1 shows that for any fixed n the estimator Pn and the corresponding estimate P̂n exist
as measurable functions mapping the data into the space of probability measures. An obvious
question then, is what the resulting measures Pn or P̂n represent. Since P̂n is just a realization of
Pn (given a specific set of data), we focus on characterization of the properties of the estimator
Pn. Given the problem formulation (1.5) and the statistical model (1.3), one would certainly
hope that the estimator provides some information regarding the underlying ‘true’ distribution
P0. In particular, we would hope that Pn → P0 in some appropriate sense. If this is the case,
then the estimator is said to be consistent. Of course, the estimator itself is a random variable,
and thus this convergence must be discussed in terms of probability. With this in mind, we
consider the following set of assumptions.

(A1) For any fixed n, the error random variables {Ej}
n
j=1 are independent and identically dis-

tributed, defined on some probability triple (Ω,ΣΩ, PΩ).

(A2) For ~E = (E1, . . . , En), E[~E ] = 0 and V ar[~E ] = σ2In, where In is the n× n identity matrix.

(A3) (Θ, d) is a separable, compact metric space; the space P(Θ) is taken with the Prohorov
metric ρ.

(A4) For all j, 1 ≤ j ≤ n, tj ∈ T for some compact space T .

(A5) The model function v ∈ C(P(Θ), C(T )).

(A6) There exists a measure µ on T such that

1

n

n∑

j=1

g(tj) =

∫

T

g(t)dµn(t) →

∫

T

g(t)dµ(t)

for all g ∈ C(T ).

(A7) The functional

J0(P ) = σ2 +

∫

T

(v(t;P0)− v(t;P ))2 dµ(t)

is uniquely minimized at P0 ∈ P(Θ).

Assumption (A1) establishes the probability triple on which the error random variables Ej are
assumed to be defined. As we will see, this probability triple will permit us to make probabilistic
statements regarding the consistency of the estimator Pn. These assumptions as well as the two
theorems below follow closely the theoretical results of [15] which establish the consistency of the
ordinary least squares estimator for a traditional nonlinear least squares problem. The key idea
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is to first argue that the functions Jn(~V ;P ) converge to J0 as n increases; then the minimizer Pn

of Jn should converge to the unique minimizer P0 of J0 [1].

Because the functions Jn are functions of the vector ~V , which itself depends on the random
variables Ej, these functions are themselves random variables, as are the estimators Pn. Though
we have generally refrained from doing so up to this point, it will occasionally be convenient
to evaluate these functions at points in the underlying probability triple. Thus we may write
Jn(~V ;P )(ω), Ej(ω), etc., whenever the particular value of ω is of interest.

Theorem 4.2. Under assumptions (A1)-(A7), there exists a set A ∈ ΣΩ with PΩ(A) = 1 such
that for all ω ∈ A,

1

n
Jn(~V ;P )(ω) → J0(P )(ω)

as n→ ∞ and for each P ∈ P(Θ). Moreover, the convergence is uniform on P(Θ).

Proof. As in [15], the proof will proceed in three parts. First, for any fixed element P ∈ P(Θ),
a set AP is constructed with PΩ(AP ) = 1 such that the convergence statement holds. The sets
AP are then used to construct a set A as described. Finally, the uniform convergence is shown.

Let P ∈ P(Θ) be fixed. We may rewrite

1

n
Jn(~V ;P ) =

1

n

n∑

j=1

(Vj − v(tj ;P ))
2

=
1

n

n∑

j=1

(Ej + v(tj ;P0)− v(tj ;P ))
2

=
1

n

n∑

j=1

E2
j +

2

n

n∑

j=1

(v(tj ;P0)− v(tj ;P ))Ej +
1

n

n∑

j=1

(v(tj;P0)− v(tj;P ))
2 .

We consider the three terms on the right. For the first term, define

B1 =

{
ω ∈ Ω

∣∣∣ 1
n

n∑

j=1

Ej(ω)
2 → σ2

}
.

By the Strong Law of Large Numbers, PΩ(B1) = 1. For the third term, observe that

1

n

n∑

j=1

(v(tj;P0)− v(tj;P ))
2 →

∫

T

(v(t;P0)− v(t;P ))2 dµ(t) = J0(P )− σ2

by assumption (A6) and the continuity of v(t; ·). (Note also that this convergence is independent
of ω ∈ Ω.) For the second term, define

Ẽj = (v(tj ;P0)− v(tj ;P ))Ej.
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Then

E[Ẽj] = 0

V ar[Ẽj] = σ2 (v(tj;P0)− v(tj;P ))
2

≤ σ2 sup
t∈T

(v(t;P0)− v(t;P ))2

≤MP

where the final inequality follows from the continuity of v and the compactness of T . Hence we
have

∞∑

j=1

V ar[Ẽj]

j2
≤MP

∞∑

j=1

1

j2
<∞

and therefore the set BP defined by

BP =

{
ω ∈ Ω

∣∣∣ 2
n

n∑

j=1

(v(tj ;P0)− v(tj ;P ))Ej → 0

}

satisfies PΩ(BP ) = 1 by Kolmogorov’s Law of Large Numbers. Finally, we may define AP =

B1 ∩ BP . Then PΩ(AP ) = 1 and 1
n
Jn(~V ;P )(ω) → J0(P ) for each ω ∈ AP , which completes the

first part of the proof.
For the second part of the proof, we must find a set A with PΩ(A) = 1 such that 1

n
Jn(~V ;P )(ω) →

J0(P ) for each ω ∈ A and for all P ∈ P(Θ). Naively, we desire A = ∩AP , but this intersection
is (in general) uncountable. Rather, we construct the set A using the dense countable subset of
P(Θ) (Theorem 3.9). Define

A1 =

{
ω
∣∣∣1
n

n∑

j=1

|Ej(ω)| → E[|E1(ω)|]

}
.

Again by the Strong Law of Large Numbers, PΩ(A1) = 1. Now define the set P̃d(Θ) as before
and set

A = A1

⋂

 ⋂

P∈P̃d

AP


 .

Since the intersection is taken over a countable number of sets, each having probability one (with
respect to PΩ), PΩ(A) = 1. To complete the second part of the proof, we must show that A ⊂ AP

for all P ∈ P(Θ) (and not merely for all P ∈ P̃d(Θ), which holds by the definition of A). If this

is the case, then 1
n
J(~V ;P )(ω) → J0(P ) for all ω in A and for all P ∈ P(Θ).

Consider any P ∈ P(Θ) and take ω ∈ A, ǫ > 0. Since ω ∈ A, ω ∈ A1 and we may choose n1

such that for all n ≥ n1,
1

n

n∑

j=1

|Ej | < 1 + E[|E1|].
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By the continuity of v and the density of P̃d(Θ) in P(Θ), we may choose PM ∈ P̃d(Θ) such that

sup
t∈T

|v(t;P )− v(t;PM)| <
ǫ

4 (E[|E1|] + 1)
.

Finally, ω ∈ A implies ω ∈ APM
which in turn implies ω ∈ BPM

. Thus we may choose n2 such
that for all n ≥ n2, ∣∣∣∣∣

2

n

n∑

j=1

(v(tj;P0)− v(tj ;PM)) Ej

∣∣∣∣∣ <
ǫ

2
.

Then for n ≥ max{n1, n2},

∣∣∣∣
1

n
Jn(~V ;P )− J0(P )

∣∣∣∣ ≤
∣∣∣∣∣σ

2 −
1

n

n∑

j=1

E2
j

∣∣∣∣∣ +
∣∣∣∣∣
2

n

n∑

j=1

(v(tj;P0)− v(tj;P )) Ej

∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

j=1

(v(tj ;P0)− v(tj;P ))
2 −

∫

T

(v(t;P0)− v(t;P ))2 dµ(t)

∣∣∣∣∣

The first term goes to zero since ω ∈ A implies ω ∈ B1. The final term goes to zero by
assumptions (A5) and (A6). For the second term,
∣∣∣∣∣
2

n

n∑

j=1

(v(tj ;P0)− v(tj ;P ))Ej

∣∣∣∣∣ ≤
∣∣∣∣∣
2

n

n∑

j=1

(v(tj;P0)− v(tj, PM)) Ej

∣∣∣∣∣+
2

n

n∑

j=1

|v(tj;PM)− v(tj;P )| · |Ej|

<
ǫ

2
+

(
2 sup

t∈T
|v(t;PM)− v(t;P )|

)(
1

n

n∑

j=1

|Ej|

)

<
ǫ

2
+ 2

(
2

4 (E[|E1|] + 1)

)
(E[|E1|] + 1)

< ǫ.

Thus 1
n
Jn(~V ;P )(ω) → J0(P ) and thus ω ∈ AP . Thus A ⊂ AP for all P ∈ P(Θ) and the second

part of the proof is complete.
Finally, we must show the convergence is uniform on P(Θ) for ω ∈ A. To do so we will

show that the sequence of functions 1
n
Jn(~V ;P )(ω) is equicontinuous (viewed as functions of P )

and then use the Arzela-Ascoli Theorem. For fixed ω ∈ A, let ǫ > 0. Take P ∈ P(Θ). By the
continuity of v (A5) and compactness of T (A4), there exists a δ > 0 such that

sup
t∈T

∣∣∣v(t;P )− v(t; P̃ )
∣∣∣ < 1

6

{
ǫ

E[|E1|] + 1
,

ǫ

supt∈T |v(t;P0)|

}

sup
t∈T

∣∣∣v(t;P )2 − v(t; P̃ )2
∣∣∣ < ǫ

3
,

for all P̃ ∈ Bδ(P ). Since ω ∈ A, ω ∈ A1 and we can choose N such that n ≥ N implies

1

n

n∑

j=1

|Ej| < E[|E1|] + 1.
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Then for n ≥ N and for all P̃ ∈ Bδ(P ),

∣∣∣∣
1

n
Jn(~V ;P )−

1

n
Jn(P̃ )

∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

j=1

(Ej + v(tj ;P0)− v(tj ;P ))
2 −

1

n

n∑

j=1

(
Ej + v(tj ;P0)− v(tj ; P̃ )

)2
∣∣∣∣∣

=

∣∣∣∣∣
1

n

n∑

j=1

(
2Ej + v(tj;P0)− v(tj ;P )− v(tj ; P̃ )

)(
v(tj; P̃ )− v(tj;P )

)∣∣∣∣∣

≤

∣∣∣∣∣
2

n

n∑

j=1

(Ej + v(tj ;P0))
(
v(tj; P̃ )− v(tj;P )

)∣∣∣∣∣

+
1

n

n∑

j=1

∣∣∣v(tj;P )2 − v(tj ; P̃ )
2
∣∣∣

≤
2

n

n∑

j=1

|Ej|

(
sup
t∈T

∣∣∣v(t;P )− v(t; P̃ )
∣∣∣
)

+

n∑

j=1

2

n

(
sup
t∈T

|v(t;P0)|

)(
sup
t∈T

|v(t;P )− v(t; P̃ )|

)

+ sup
t∈T

∣∣∣v(t;P )2 − v(t; P̃ )2
∣∣∣

≤
ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ.

Thus the sequence of functions 1
n
Jn(~V ;P )(ω) is equicontinuous for each ω ∈ A and by the Arzela-

Ascoli Theorem, 1
n
Jn(~V ;P )(ω) → J0(P ) uniformly on compact subsets of P(Θ), and hence on

P(Θ) itself.

Theorem 4.3. Under assumptions (A1)-(A7), the estimators Pn
w∗

−→ P0 as n → ∞ with proba-
bility 1. That is,

PΩ

({
ω
∣∣∣Pn(~V )(ω) → P0

})
= 1.

Proof. Take the set A as in the previous theorem and fix ω ∈ A. Then by the previous theorem,
1
n
Jn(~V ;P )(ω) → J0(P ) for all P ∈ P(Θ). Let δ > 0 be arbitrary and define O = Bδ(P0). Then O

is open in P(Θ) (in the subspace topology) and OC is compact (again, in the subspace topology).
Since P0 is the unique minimizer of J0(P ) by assumption (A7), there exists ǫ > 0 such that

J0(P )− J0(P0) > ǫ

for all P ∈ OC . By the previous theorem, there exists n0 such that for n ≥ n0,

∣∣∣∣
1

n
Jn(~V ;P )(ω)− J0(P )

∣∣∣∣ <
ǫ

4
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for all P ∈ P(Θ). Then for n ≥ n0 and P ∈ OC,

1

n

(
Jn(~V ;P )(ω)− Jn(~V ;P0)(ω)

)
=

1

n
Jn(~V ;P )(ω)− J0(P ) + J0(P )− J0(P0) + J0(P0)

−
1

n
Jn(~V ;P0)(ω)

≥ −
ǫ

4
+ ǫ−

ǫ

4
> 0.

But Jn(~V ;Pn)(ω) ≤ Jn(~V ;P0)(ω) by definition of Pn. Hence we must have Pn ∈ O = Bδ(P0) for

all n ≥ n0, which implies Pn(ω)
w∗

−→ P0 since δ > 0 was arbitrary.

Theorem 4.3 establishes the consistency of the estimator (1.5). Given a set of data ~v, it follows
that the estimate P̂n corresponding to the estimator Pn will converge to the true distribution
P0 under the stated assumptions. We remark that these assumptions are not overly restrictive
(compare [15, 20, 28]) though some of the assumptions may be difficult to verify in practice.
Assumptions (A3)–(A5) are mathematical in nature and may be verified directly for each specific
problem. Assumptions (A1) and (A2) describe the error process which is assumed to generate the
collected data. While it is unlikely that one will be able to prove a priori that the error process
satisfies these assumptions, posterior analysis such as residual plots [24, Ch. 3] can be used to
investigate the appropriateness of the assumptions of the statistical model. Assumption (A6)
reflects the manner in which data is sampled and, together with Assumption (A7), constitutes
an identifiability condition for the model. The limiting sampling distribution function µ may be
known if the experimenter has complete control over the values tj of the independent variables
(e.g., if the tj are measurement times) but this is not always the case.

5 Computational Convergence

To this point, the analysis has focused on the properties of the estimators Pn and the resulting
estimates P̂n. However, it is generally not possible to solve the optimization problems (1.5)

or (1.6) for Pn or P̂n as a function of ~V or ~v. As a result, approximate (generally numerical)
methods must be used in order to solve (1.7) and obtain an approximate estimate P̂N

n,M . We

must ascertain, then, how the approximate estimate P̂N
n,M relates to the exact estimate P̂n (for

any fixed value of n.) These results are outlined in [21] and are included again here with proof.

Theorem 5.1. Let (Θ, d) be a compact, separable metric space and consider the space (P(Θ), ρ)
of probability measures on Θ with the Prohorov metric, as before. Let PM(Θ) be as defined in
(4.1). Assume

1. the map P 7→ JN
n (~v, P ) is continuous for all n,N ;

2. for any sequence of probability measures Pk → P in P(Θ), vN(t;Pk) → v(t;P ) as N, k →
∞;

3. v(t;P ) is uniformly bounded for all t, P .
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Then there exists minimizers P̂N
n,M satisfying (1.7). Moreover, for fixed n, there exists a subse-

quence (as M,N → ∞) of the approximate estimates P̂N
n,M which converges to some (possibly

non-unique) P̂ ∗
n which satisfies (1.6).

Proof. For any fixed n, the existence of the minimizers P̂N
n,M follows from the compactness of the

space (P(Θ), ρ) (Corollary 3.8) and the continuity of the map P 7→ J(~v;P ) (Assumption 1). By
definition, these minimizers satisfy

JN
n (~v, P̂N

n,M) ≤ JN
n (~v, PM) (5.1)

for all PM ∈ PM(Θ) and for each n,N .
Next, we show an auxiliary result. Consider any sequence Pk → P in P(Θ) (see Assumption

2). Then

∣∣JN
n (~v, Pk)− Jn(~v, P )

∣∣ =
∣∣∣∣∣
∑

j

(
vj − vN(tj ;Pk)

)2
−
∑

j

(vj − v(tj;P ))
2

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

(
2vj − vN(tj;Pk)− v(tj ;P )

) (
v(tj;P )− vN(tj ;Pk)

)
∣∣∣∣∣

< M
∑

j

∣∣v(tj ;P )− vN(tj ;Pk)
∣∣→ 0,

where we have used the uniform boundedness of v(t;P ) (Assumption 3) as well as Assumption
2.

Now, we return to (5.1). Since P(Θ) is compact there must exist (possibly after reindexing)
a limit P̂ ∗

N = lim P̂N
n,M . Next consider any P ∈ P(Θ). By Theorem 3.9, it is possible to construct

a sequence of measures PM ∈ PM(Θ) ⊂ P(Θ) so that PM → P in P(Θ). Hence, taking limits
in (5.1) as M and N go to infinity (where we tacitly assume the indices have been renumbered
according to the convergent subsequence), we have

Jn(P̂
∗
n) ≤ Jn(P ) for all P ∈ P(Θ),

and we see that P̂ ∗
n satisfies (1.6).

This theorem provides a set of conditions under which a subsequence of approximate estimates
P̂N
n,M converges to the estimate P̂ ∗

n of interest. This estimate is itself a realization (for a particular
data set) of the estimator Pn which has been shown to exist and to be consistent, so that
Pn → P0 with probability one. Thus we have some reasonable assurance that a computed
approximate estimate P̂N

n,M reflects the true distribution P0. The assumptions of Theorem 5.1 are
not restrictive. In typical problems (and, indeed, in the assumptions of other theorems appearing
in this document) it is assumed that the parameter space Θ as well as the independent variable
space T are compact (see, e.g., Section 4). In such a case, Assumptions 1 and 3 above are satisfied
if the individual model solutions y(t; θ) are continuous on T × Θ. Assumption 2 is then simply
a condition on the convergence of the numerical procedure used in obtaining model solutions.

25



Significantly, the Prohorov Metric Framework is computationally constructive. In practice,
one does not construct a sequence of estimates for increasing values ofM and N ; rather, one fixes
the values of M and N to be sufficiently large to attain a desired level of accuracy. By Theorem
3.9, we need only to have some enumeration of the elements of PM(Θ) in order to compute an
approximate estimate P̂N

n,M . (We will not consider the choice of N , as this will depend upon the
numerical framework by which approximate model solutions vN(t;P ) are obtained.) Practically,
this is accomplished by selecting M nodes in Θ, {θMk }Mk=1. The optimization problem (1.7) is
then reduced to a standard constrained estimation problem over Euclidean M-space in which
one determines the values of the weights pMk corresponding to each node. Thus,

P̂N
n,M = arg min

PM (Θ)

n∑

j=1

(vj − v(tj;P ))
2

= arg min
PM (Θ)

n∑

j=1

(
vj −

∫

Θ

Cy(tj; θ)dP (θ)

)2

= argmin
R̃M

n∑

j=1

(
vj −

(
M∑

k=1

Cy(tj; θ
M
k )pMk

))2

,

where in the final line we seek the weights p̄M = (pM1 , . . . , p
M
M)T ∈ R̃M = {p̄M |pMk ∈ R+,

∑M
k=1 p

M
k =

1}. These are sufficient to characterize the approximating discrete estimate P̂N
n,M since the nodes

are assumed to be fixed in advance. Moreover, define

Hkl = 2
∑

j

(Cy(tj; θk)) (Cy(tj; θl))

fk = −2
∑

j

vj (Cy(tj; θk))

c =
∑

j

(vj)
2 .

Then one can equivalently compute [11]

P̂N
n,M = argmin

R̃M

(
1

2

(
p̄M
)T
Hp̄M + fT p̄M + c

)
. (5.2)

From this reformulation, it is clear that the approximate problem (1.7) has a unique solution if
H is positive definite. If the individual mathematical model (1.2) is independent of P ,2 then the

2This independence of the individual model on the population distribution is strongly suggested by our choice
of notation for the individual solutions, y(t; θ, ψ). In many problems of interest, this is a perfectly reasonable
assumption. For instance, in a size-structured biological model [9, 11, 13, 16, 17], the individual rate of growth
may vary across the population, but the rate of growth of an individual is unaffected by the rates of growth
of his neighbors. It is possible however, that the individual mathematical model may depend upon the pop-
ulation distribution, y(t; θ, ψ, P ). For instance, in a size-structured population model, fast-growing individuals
may out-compete their slower growing neighbors for limited resources. Such examples also arise in models of
electromagnetic polarization and deformations of viscoelastic materials. See [2, Sec. 14.1.2] for a more complete
discussion.
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matrices H and f can be precomputed in advance. Then one can rapidly (and exactly) compute
the gradient and Hessian of the objective function in a numerical optimization routine. As M
grows large, the quadratic optimization problem (5.2) becomes poorly conditioned [11]. Thus
there is a trade-off: M must be chosen sufficiently large so that the computational approximation
is accurate, but not so large that ill-conditioning leads to large numerical errors. The efficient
choice of M as well as the choice of the nodes {θk}

M
k=1 is an open research problem.

It should be acknowledged that the uniqueness of the computational problem (i.e., when
H is positive definite) is not sufficient to ensure the uniqueness of the limiting estimate P̂ ∗

n in
Theorem (5.1) (as there could be multiple convergent subsequences). However, if Jn(~v;P ) is
uniquely minimized, then every subsequence of P̂N

n,M which converges as N,M grow large must
converge to that unique minimizer. Moreover, under assumptions (A1)–(A7) in Section 4, it has
been shown that 1

n
Jn(~v, P ) → J0(P ) (as n grows large) with probability one, and the function

J0(P ) is assumed to be uniquely minimized by P0.

6 Extensions to Other Error Models

In this final section, we comment on generalizations of the statistical and error models (1.3) and
(1.4). As noted in Section 1, the estimator (1.5) is premised upon an assumption of independent,
identically distributed, constant variance additive error,

Vj = v(t;P0) + Ej,

which may be rewritten
~V = v(~t;P0) + ~E (6.1)

where by assumption

E[~E ] = ~0

V ar[~E ] = σ2In.

While such an assumption is common, many physical and biological problems are not accurately
described by such a simple statistical model. Thankfully, the results presented above can be
easily extended to cover a larger class of error models. Consider the more general error model

E[~E ] = ~0

V ar[~E ] = σ2W = σ2diag(w(t1)
2, . . . , w(tn)

2), (6.2)

where the function w(t) > 0 is a continuous weighting function. Such a statistical model arises
from an observation process in which measurement errors are independent but are not identically
distributed. This formulation includes the special case that w(t) = v(t;P0), which is commonly
called a relative error [24] or constant coefficient of variance (CCV) error model [20, 26]. (Of
course, in such a case, one does not actually know P0 and an iterative estimation procedure must
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be used [24, 26].) Now define L = diag(w(t1), . . . , w(tn)). It follows that LLT = L2 = W and
L−1 exists (since it is assumed w(t) > 0 for all t). Applying L−1 to both sides of (6.1),

L−1~V = L−1~v(~t, P0) + L−1 ~E

or

~Z = ~ν(~t, P0) + ~η, (6.3)

where ~Z, ~ν, and ~η have the obvious definitions. Moreover, assuming the distributions from which
the random errors are drawn are uniquely determined by their first two statistical moments, the
random variables ηj are independent and identically distributed with constant variance. Thus
the theory presented in this document can be applied to the transformed model (6.3).

Additional generalizations are also possible. For instance, the matrix W may depend upon
additional nuisance parameters γ. In particular it has been shown that histogram data from a
flow cytometer is well-described by an error model of the form W = diag(w(t1)

γ , . . . , w(tn)
γ) for

some scalar γ [20, 23, 32]. Such nuisance parameters can be estimated in an iterative procedure
[28] and the theory presented in this document is essentially unchanged. If the observations are
not independent, then the matrix R in (1.4) will not be diagonal. In such a situation, the theory
presented in this report can still be applied provided R is diagonalizable and this diagonalization
is sufficient so that the resulting transformed errors are independent and identically distributed
(such is the case, for instance, for autoregressive errors of order r < n).

7 Concluding Remarks

In this document we have defined a parameter estimation problem in which one has a mathe-
matical model describing the dynamics of an individual biological or physical process but data
which is sampled from a population of individuals. Because each individual is assumed to be de-
scribed by a unique set of parameters, the data is described not by a single parameter but by the
probability distribution (over all individuals) from which these individual parameters are sam-
pled. Theoretic results for the nonparametric measure estimation problem are presented which
establish the existence and consistency of the estimator. A previously proposed and numerically
tested computational scheme is also discussed and its convergence is proven.

Several open problems remain. First, while the computational scheme is simple, it is not
always clear how one should go about choosing theM nodes θk from the dense subset of Θ which
are then used to estimate weights pk. From a theoretical perspective, the nodes need only to be
added so that they ‘fill up’ the parameter space in an appropriate way. In practice, however,
rounding error and ill-conditioning can be quite problematic, particularly for a poor choice of
nodes. A more complete computational algorithm would include information on how to optimally
choose the M nodes θk (as well as the appropriate values of M).

Additionally, given the consistency of the estimator Pn, it would be desirable to place some
measure of confidence on the estimated probability distribution. The traditional frequentist
approach relies on either asymptotic theory or bootstrapping to construct such measures of
confidence. In the former case, it is not clear how one might extend notions of sensitivity to the
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space of probability measures, which would require a notion of differentiability on the space of
probability measures. In the latter case, the results provide some computational estimates but
a rigorous theory is not yet available. Some preliminary work on these topics has been initiated
[12, 14] and is still ongoing.
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